
RE-Introduction to
One-Sided communication

PGAS Languages:
Co-arrays in Fortran 2008

UPC

Nathan Wichmann
wichmann@cray.com

April 09 Slide 2

Outline

  What is one-sided communication?
  How do I do this?
  Why would I want to?
  Examples and success stories.

  Partitioned Global Address Space
  Language level parallelism as opposed to library calls

•  Extension to C – Unified Parallel C (UPC)
•  New feature call Co-array in Fortran 2008 (CAF)

  Single-sided communication as opposed to two-sided MPI
comms

  Explicit synchronization required – this is (mostly) implicit in MPI
  Gives compiler lots of freedom for optimization
  Many algorithms are very naturally expressed using one-sided

language level parallelism
•  Handing off work/data to another pe
•  Halo exchanges
•  Mesh manipulation and movement

PGAS programming

4/14/09 3

  Cray have been supporting CAF and UPC since the
beginning
•  Support on the T3E, Cray X1, X2

  Full PGAS support on the Cray XT
•  Cray Compiling Environment 7.0 – Dec 08
•  Full UPC 1.2 specification
•  Full CAF support – CAF proposed for the Fortran 2008 standard
•  Hybrid MPI/PGAS codes supported – very important!

  Fully integrated with the Cray software stack
•  Same compiler drivers, job launch tools, libraries
•  Integrated with Craypat – Cray performance tools

PGAS and Cray

4/14/09 4

Cray Inc. Preliminary and Proprietary 5

Special features of Baker relating to CAF/UPC

  On X1 and X2, the custom processor directly emits
addresses for any memory location in the machine. Loads/
stores can be done to any global address in the system

  On Baker the Gemini NIC used to ‘extend’ address space of
Opteron references to access memory on remote nodes
•  Fortran or C compilers recognize CAF/UPC references and

generates appropriate messages to Gemini to load from or store to
remote memory

•  Users can stride on local offsets or across processor space with any
stride, including Gather/Scatter

April 09 Slide 6

Fortran 2008 - Parallel programming

 Fortran 2008 is a natively parallel language

 SPMD programming model
 Simple syntax for one-sided communication
  Image synchronization
 Coordinated program termination

April 09 Slide 7

Fortran 2008 - programming model

Executable is replicated across processors (MPI-like)

Each instance is called an “IMAGE”

Each image has its own data objects

Each image executes asynchronously except when syncs are
indicated

April 09 Slide 8

Co-array Fortran: Basics and terminology
 Any time a co-array appears without []’s, the

reference is to the data on the local image
 The number inside the []’s can reference any image

in the job, including myself
  If a reference with []’s appears to the right of the =,

it is often called a “get”
  If a reference with []’s appears to the right of the =,

it is often called a “put”

 What does this do? a(:)[ri] = b(:)
The statement copies, or “puts” a local “b” into the “a” of image “ri”

April 09 Slide 9

CAF array syntax
  Declaration

 real(8), ALLOCATABLE :: rcvbuf(:,:)[:]

  Dynamic Allocation

! Allocate m*n elements on each processor
 ALLOCATE(rcvbuf(m,n)[*])

  Reference

! Reference element (i,j) on processor k
 rcvbuf(i,j)[k]

  PE control

 this_image(), num_images()

April 09 Slide 10

Array Example

Real(8) a(3)

Image 1 Image 2 Image 3 Image 4

a(1)

a(2)

a(3)

a(1)

a(2)

a(3)

a(1)

a(2)

a(3)

a(1)

a(2)

a(3)

April 09 Slide 11

Co-Array Example

Real(8) a(3)[*]

Image 1 Image 2 Image 3 Image 4

a(1)[1]

a(2)[1]

a(3)[1]

a(1)[1]

a(2)[2]

a(3)[2]

a(1)[3]

a(2)[3]

a(3)[3]

a(1)[4]

a(2)[4]

a(3)[4]

April 09 Slide 12

Fortran 2008 – Basic “Put”

real :: s(100)[*]
real,allocatable :: a(:)[:] ! S and A are “co-arrays”

allocate (a(100)[*])
a = 10.
s = 11.
mype = this_image()

if (mype == 1) a(:)[1] = s(:)[2]

April 09 Slide 13

Fortran 2008 - synchronization
Explicit statements:

sync all
sync images (images)
sync memory
critical / end critical
lock / unlock

Implicit synchronization:
allocation of a co-array
deallocation of a co-array (either explicit or implicit)

RYO synchronization:
 atomic_ref / atomic_def

April 09 Slide 14

Halo Exchange: MPI
doubleprecision ai(ip,ihp,6)
...
call mpi_isend (ai(1,1,1), ihp*ip, mpi_real, imgi(myp+1), &
 9905, mpi_comm_world, mpireq(1), mpierr);
call mpi_isend (ai(1,1,2), 2*ihp*ip, mpi_real, imgi(myp-1), &
 9906, mpi_comm_world, mpireq(2), mpierr);
call mpi_irecv (ai(1,1,4), ihp*ip, mpi_real, imgi(myp-1), &
 9905, mpi_comm_world, mpireq(3), mpierr);
call mpi_irecv (ai(1,1,5), 2*ihp*ip, mpi_real, imgi(myp+1), &
 9906, mpi_comm_world, mpireq(4), mpierr);
call mpi_waitall (4, mpireq, mpistat)

Each PE must make a call to MPI to do BOTH the send and the receive. Both PE’s
must know the communication will happen and perform the message passing “at
the right time”.

April 09 Slide 15

Halo Exchange: Co-array Fortran

Real(8) ai(ip,ihp,6)[*]
....
ai(:,:,4:4) = ai(:,:,1:1)[img(myp-1)]
ai(:,:,5:6) = ai(:,:,2:3)[img(myp+1)]
call sync_all()

Simple, transparent syntax. The other PE does not need to directly
participate

One only needs to know there are not race conditions on the data.

April 09 Slide 16

What if one cannot change variables?
  Subroutine dummy argument

 SUBROUTINE fft_transpose(zstick, . . .)
 COMPLEX :: zstick(*)

  Define derived type

 TARGET zstick

 TYPE CAFP
 COMPLEX, DIMENSION(:), POINTER :: p
 END TYPE CAFP
 TYPE (CAFP) pzstick[*]

April 09 Slide 17

What if cannot change (cont’d)
  Set pointer

 pzstick%p => zstick(1:n)
 call sync_all()

  Reference zstick(i) on proc k

 pzstick[k]%p(i)

April 09 Slide 18

Fortran 2008 - pointer components
subroutine sort(t,n)
integer :: n
real,target :: t(n)

type yy
 real,pointer :: p(:)
end type yy
type(yy) :: image[*]

image%p => t ! Point at the remote data
sync all ! Sync to make sure everyone has completed the pointing
x = image[1]%p(1) ! Reference the remote data
…

April 09 Slide 19

CAF works very well with OpenMP

!$omp parallel do …
do j=1,m
 do i=1,n
 target(i,j)[target_proc] = source(i,j)
enddo;enddo

Uses all OMP threads to “put” data into
the target location on the target
processor.

April 09 Slide 20

What is UPC?
  Unified Parallel C
  Syntactic extension to Standard C
  Designed by IDA CCS, UC-Berkeley, LANL
  SPMD plus HPF-like data and work distribution features

April 09 Slide 21

UPC Examples

shared double a[3][THREADS];

Thread 0 Thread 1 Thread 2 Thread 3

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][1]
a[2][1]a[2][0]

a[1][0] a[1][2]
a[2][2]

a[1][3]
a[2][3]

April 09 Slide 22

Halo Exchange: Cray UPC Subset

shared double ai[6][ihp][ip][THREADS];
...
for (j=0; j<ihp; j++){

 for (i=0; i<ip; i++){
 ai[3][j][i][MYTHREAD] = ai[0][j][i][thd[myp-1]]
 ai[4][j][i][MYTHREAD] = ai[1][j][i][thd[myp+1]];
 ai[5][j][i][MYTHREAD] = ai[2][j][i][thd[myp+1]];
 }

}
upc_barrier();

Advantages very similar to CAF.

April 09 Slide 23

Advantages of One-Sided communication
  Easier to program (See Halo Exchange and Random Access)

•  Don’t have to write both send and receive

•  More transparent what is going on

  Enables new algorithms (See Dynamic Mesh CFD from AHPCRC)
•  Only one PE needs to do the communication. Data can be retrieved and modified without

coordination with PE holding the data
•  More freedom in when and where the communication is done.

  Reduced communication time overhead, hence better scalability (for
supporting hardware)

  Can spread out communications / Easier to Mix computation and
communication
•  Collectives like MPI_ALLTOALL concentrate communication

•  Perhaps better to get and put data as you need it.

April 09 Slide 24

Good Practices for UPC/CAF/shmem, etc.

  Use 4/8 byte sized shared variables
  Code to overlap communication with computation

  Hardware is designed to support this
  Reduces communication hot spots

  Try to “PUT” data instead of “GET” data
  Avoid use of strict shared types when possible (increases

memory synchronization requirements)
  Try to avoid generalized scatter/gather in inner loops

(unless overlapped with computation)

PGAS in practice:

Examples of how PGAS was, can,
and will be used

April 09 Slide 25

Smoothing out Communication
  MPI collectives can often focus all communication into a

specific time and place
  Can use CAF/UPC to spread that communication out and

overlap with computation
  Simplified MVH3:

do i=1,many
 call sweepx ! All compute, no communication
 call mpi_alltoall ! Intense communication
 call sweepy ! All compute, no communication
 call mpi_alltoall ! Intense communication
 call sweepz ! All compute, no communication
 call mpi_alltoall ! Intense communication
enddo

April 09 Slide 26

Smoothing out Communication
  Put data to next location as you compute it

do i=1,many
 call sweepx_put_to_y ! Compute, with communication spread out
 call sweepx_put_to_y ! Compute, with communication spread out
 call sweepx_put_to_y ! Compute, with communication spread out
enddo

April 09 Slide 27

GTC: Online/asynchronies diagnostic processing*
  GTC requires diagnostic to be run at the same time as

simulation
•  Too much data to store for post-processing
•  Does not need to prevent the simulation from proceeding

  One group of processors can process data while main
simulation process
•  How does one coordinate the data transfer?

April 09 Slide 28

* Thanks to Scott Klasky of ORNL for this idea

GTC: Online/asynchronies diagnostic processing
 Simulation group

do i=1,timestep

 call main_computation

 call check_if_diagnostic_buffer_read

 call put_data_to_diag

 call inform_diag_data_is_ready

enddo

 Diagnostic Group

do i=1,timestep

 call set_buffer_ready_flag

 call wait_for_data

 call perform_diagnostics

 call store_diagnostic_results

enddo

April 09 Slide 29

Simple double buffer can help reduce synchronization cost to close to zero

April 09 Slide 30

UPC Random Access:
Designed for Speed

  This version of UPC Random Access was originally written in
Spring 2004

  Written to maximize speed

  Had to work inside of the HPCC benchmark

  Had to run well on any number of CPUs

  Also happens to be a very productive way of writing the
Global RA.

April 09 Slide 31

Productivity: Fewer lines of code

UPC VERSION
#pragma _CRI concurrent
for (j=0; j<STRIPSIZE; j++)

 for (i=0; i<SendCnt/STRIPSIZE; i++) {
 VRan[j] = (VRan[j] << 1) ^ ((s64Int) VRan[j]< ZERO64B ?

POLY : ZERO64B);
 GlobalOffset = VRan[j] & (TableSize - 1);

 if (PowerofTwo) LocalOffset=GlobalOffset>>logNumProcs ;
 else LocalOffset=(double)GlobalOffset/

(double)THREADS;
 WhichPe=GlobalOffset-LocalOffset*THREADS;
 Table[LocalOffset][WhichPe] ^= VRan[j] ;
 }

}

BASE VERSION
NumRecvs = (NumProcs > 4) ?(Mmin(4,MAX_RECV)) : 1;
 for (j = 0; j < NumRecvs; j++)

MPI_Irecv(&LocalRecvBuffer[j*LOCAL_BUFFER_SIZE],
localBufferSize,INT64_DT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD,&inreq[j]);

while (i < SendCnt) {
do {
MPI_Testany(NumRecvs, inreq, &index, &have_done,

&status);
if (have_done) {
 if (status.MPI_TAG == UPDATE_TAG) {
 MPI_Get_count(&status, INT64_DT, &recvUpdates);
bufferBase = index*LOCAL_BUFFER_SIZE;
for (j=0; j < recvUpdates; j ++) {
 inmsg = LocalRecvBuffer[bufferBase+j];
 LocalOffset = (inmsg & (TableSize - 1)) -

GlobalStartMyProc;
 HPCC_Table[LocalOffset] ^= inmsg;
 }
 } else if (status.MPI_TAG == FINISHED_TAG) {
 NumberReceiving--;
 } else {
 abort();
 }

April 09 Slide 32

Productivity : Fewer lines of code

UPC VERSION BASE VERSION

MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE],
localBufferSize,INT64_DT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD,&inreq[index]);

}
} while (have_done && NumberReceiving > 0);
 if (pendingUpdates < maxPendingUpdates) {
 Ran = (Ran << 1) ^ ((s64Int) Ran < ZERO64B ?

POLY : ZERO64B);
 GlobalOffset = Ran & (TableSize-1);
 if (GlobalOffset < Top)
 WhichPe = (GlobalOffset / (MinLocalTableSize +

1));
 else
 WhichPe = ((GlobalOffset - Remainder) /

MinLocalTableSize);
 if (WhichPe == MyProc) {
 LocalOffset = (Ran & (TableSize - 1)) -

GlobalStartMyProc;
 HPCC_Table[LocalOffset] ^= Ran;
 }
 else {
 HPCC_InsertUpdate(Ran, WhichPe, Buckets);
 pendingUpdates++;
 }
 i++;
 }
 else {

April 09 Slide 33

Productivity : Fewer lines of code

UPC VERSION
BASE VERSION

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
 if (have_done) {
 outreq = MPI_REQUEST_NULL;
 pe = HPCC_GetUpdates(Buckets, LocalSendBuffer,

localBufferSize, &peUpdates);
 MPI_Isend(&LocalSendBuffer, peUpdates, INT64_DT,

(int)pe, UPDATE_TAG, MPI_COMM_WORLD, &outreq);
 pendingUpdates -= peUpdates;
 }}}
while (pendingUpdates > 0) {
do {
MPI_Testany(NumRecvs, inreq, &index, &have_done,

&status);
if (have_done) {
 if (status.MPI_TAG == UPDATE_TAG) {
 MPI_Get_count(&status, INT64_DT, &recvUpdates);
 bufferBase = index*LOCAL_BUFFER_SIZE;
 for (j=0; j < recvUpdates; j ++) {
 inmsg = LocalRecvBuffer[bufferBase+j];
 LocalOffset = (inmsg & (TableSize - 1)) -

GlobalStartMyProc;
 HPCC_Table[LocalOffset] ^= inmsg;
 }
} else if (status.MPI_TAG == FINISHED_TAG) {
 NumberReceiving--;

April 09 Slide 34

Productivity : Fewer lines of code

UPC VERSION

BASE VERSION
} else {
 abort();}
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE],

localBufferSize,INT64_DT, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD,&inreq[index]);

}} while (have_done && NumberReceiving > 0);
 MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
 if (have_done) {
 outreq = MPI_REQUEST_NULL;
 pe = HPCC_GetUpdates(Buckets, LocalSendBuffer,

localBufferSize, &peUpdates);
 MPI_Isend(&LocalSendBuffer, peUpdates, INT64_DT,

(int)pe, UPDATE_TAG, MPI_COMM_WORLD, &outreq);
 pendingUpdates -= peUpdates;
 } }
for (proc_count = 0 ; proc_count < NumProcs ; +

+proc_count) {
 if (proc_count == MyProc) { finish_req[MyProc] =

MPI_REQUEST_NULL; continue; }
 MPI_Isend(&Ran, 1, INT64_DT, proc_count,

FINISHED_TAG,MPI_COMM_WORLD, finish_req + proc_count);
 }
while (NumberReceiving > 0) {

April 09 Slide 35

Productivity : Fewer lines of code

UPC VERSION
BASE VERSION

MPI_Waitany(NumRecvs, inreq, &index, &status);
if (status.MPI_TAG == UPDATE_TAG) {
 MPI_Get_count(&status, INT64_DT, &recvUpdates);
 bufferBase = index * LOCAL_BUFFER_SIZE;
for (j=0; j < recvUpdates; j ++) {
 inmsg = LocalRecvBuffer[bufferBase+j];
 LocalOffset = (inmsg & (TableSize - 1)) -

GlobalStartMyProc;
 HPCC_Table[LocalOffset] ^= inmsg;
 }
 } else if (status.MPI_TAG == FINISHED_TAG){
 NumberReceiving--;
 } else {
 abort(); }
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE],

localBufferSize,INT64_DT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &inreq[index]);

}
MPI_Waitall(NumProcs, finish_req, finish_statuses);
HPCC_FreeBuckets(Buckets, NumProcs);
for (j = 0; j < NumRecvs; j++) {
 MPI_Cancel(&inreq[j]);
 MPI_Wait(&inreq[j], &ignoredStatus);
 }

  MPI mode
•  All communication and timing done using MPI calls

  UPC mode
•  Problem I/O, setup and initialization done using MPI
•  Core communication (gathers, scatters, collective operations), timing

done using UPC

  Communication method (MPI vs UPC) is selected at
compile-time

  UPC was incrementally added to the code, one routine at a
time.

BenchC

  Very lightweight modification to the code – little disruption
  Create shared buffers for boundary exchanges

•  shared double *shared buffSH[THREADS]
•  buffSH[MYTHREAD] = (shared double *shared)upc_alloc(nec*sizeof(Element))

– for remote access of shared data
•  buff = (double *) buffSH[MYTHREAD] – for local access of shared data

Data Layout

buffSH[0] buffSH[1] buffSH[THREADS-1]

SHARED

PRIVATE

Thread 0 Thread 1 Thread THREADS-1

…

N2

…

Nn N1

 buff

 buff buff

  Gathers/Scatters
 …initial ordering of data…
 ip = ep[i];
 for (j = 0; j < num; j++)

 bg[iloc1 + j] = buffSH[ip][iloc2 + j] /*collect data from across THREADS*/
  Broadcasts/Reductions

 global_normSH[MYTHREAD] = loc_val;
 if (MYTHREAD == 0){
 for (ip = 1; ip < THREADS; ip++) loc_val +=global_normSH[ip];
 for (ip = 0; ip < THREADS; ip++) global_normSH[ip] = loc_val;
 }

  Code just compiles normally
•  cc –h upc –c –h list=ms my_upc_broadcast.c

BenchC UPC Communication Patterns

 664. 1-------< for (i = 0; i < epnum; i++){
 665. 1 iloc1 = eploc [i]*len;
 666. 1 iloc2 = eploc2[i]*len;
 667. 1 num = (eploc[i+1] - eploc[i+0])*len;
 668. 1 btSend += num*8; /* sizeof(double) */
 669. 1 ip = ep[i];
 670. 1
 671. 1 #pragma ivdep
 672. 1 r----<> for (j = 0; j < num; j++) buffSH[ip][iloc2+j] =

 bg[iloc1+j];

UPC BenchC code example-Cray XT5m

4/14/09 39

CC-6005 CC: SCALAR File = ncommsetup.c, Line = 672
 A loop was unrolled 8 times.

CC-6325 CC: VECTOR File = ncommsetup.c, Line = 672
 Although A loop was marked with an IVDEP directive, it cannot be vectorized
 because it contains one or more operations that have no vector form.

April 09 Slide 40

41

Dynamic-Mesh Generation
Xflow from AHPCRC
  Tightly Couple automatic mesh generation technology within

parallel flow solvers
•  Mesh generation never stop and runs in-conjunction with the flow

solver
•  Mech continuously changes due to changes in geometry.or other

conditions

Source: PGAS presentation of Andrew Johnson of AHPCRC

XFlow
  Complex CFD applications have moving components and/or

changing domain shapes
•  Rotational geometries and/or flapping wings
•  Most fluid-structure interaction applications
•  Engines, turbines, pumps, etc.
•  Fluid-particle flows and free-surface flow

  Many methods have been developed to solve these types of
applications
•  None are ideal and all have limitations

  MPI approach to “Dynamic-Mesh CFD” was unsuccessful in
the past due to algorithm complexity (~1997 time frame)

  Ultimate goal of “Dynamic-Mesh CFD”
•  Mesh should be “dependent” on the solution by continuously changing

XFlow

  Fully integrate automatic mesh generation within the parallel flow solver
•  Mesh generation never stops and runs in-conjunction with the flow

solver
  Element connectivity changes as required to maintain a

“Delaunay” mesh
  New nodes added as required to match user-specified refinement

values
  Existing nodes deleted when not needed

•  Mesh continuously changes due to changes in geometry and/or the
solution
  Mesh size can grow or shrink at each time step

  Very complicated method
•  Parallelism (UPC), vectorization, dynamic data structures, solvers

(mesh moving and fluid flow), general CFD accuracy, scalability, CAD
links, etc.

•  Will take time to fully evaluate

XFlow
  Mesh is distributed amongst all processors (fairly uniform

loading)
  Developed a fast Parallel Recursive Center Bi-section mesh

partitioner
  Each processor maintains and controls its own piece of the

mesh
•  Each processor has a list of nodes, faces, and elements
•  Each list consists of an array of C structures (Node, Face, or Element

arrays)
•  These arrays are defined “shared”

  Adds a “processor-dimension” to each array
 elementsSH[proc][local-index].n[0-through-4]
 elementsSH[proc][local-index].np[0-hrough-4]
 elements[local-index].c[X]
 elements[local-index].det

  Can read-from, or write-to, other processors “entities”
whenever required

XFlow
  What this method needs…

•  Each processor able to reference any arbitrary elements, faces, or
nodes across entire mesh

•  Each processor able to modify any other processors portion of the
mesh

•  Each processor able to search anywhere in the mesh
•  For performance, minimize these off-processor references by using

smart mesh partitioning techniques
  Why MPI is not a good fit for this method

•  Can’t arbitrarily read-from or write-to other processors data
•  Searches “stop” at processor/partition boundaries

  Partition boundaries are “hard” (enforced) boundaries
•  A processor can’t change and alter another processor’s mesh

structure
  Why is UPC good

•  You can do these kinds of things
  Need to carefully use memory/process barriers

April 09 Slide 46

Dynamic Mesh

April 09 Slide 47

April 09 Slide 48

April 09 Slide 49

One-Sided Conclusions

 They offer improved productivity of explicit
communication codes on all platforms

 They enable new algorithms that are difficult to
impossible to code using two-sided communication

 They offer improved performance on Cray platforms

